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Noise Due to Pulse-to-Pulse Incoherence
in Injection-Locked Pulsed
" Microwave Oscillators

D. ANDERSON, M. LISAK, anD T. LEWIN

Abstract —1t is demonstrated that partial pulse-to-pulse coherence in a
pulsed oscillator system gives rise to an excess noise, which may be
significantly reduced by injection locking.

I. INTRODUCTION

Injection locking of oscillators has become a standard tech-
nique in a variety of technically very important situations. In
particular, it has been used to great advantage in connection with
microwave negative resistance devices like, for example, the IM-
PATT diode [1]. In addition to its characteristic property of
providing a stable oscillator output frequency, injection locking
has also been used for many other purposes, like to generate,
amplify, amplitude limit, and detect frequency-modulated or
phase-modulated signals [1].

Another very important property of injection locking is its
ability to suppress the inherent noise level of an oscillator. In a
classical work in 1968, Kurokawa [2] analyzed how the oscillator
noise could be improved by injection locking. This analysis has
subsequently been improved and extended by several authors to
include higher levels of injection signals and/or noise [3].

However, most treatments of noise in injection-locked oscilla-
tors consider the CW case and very little attention has been paid
to the specific problems associated with pulsed operation [1].
Actually, the very pulsed nature of the operating mode is an
additional source of noise, which may even dominate the inherent
noise of the oscillator itself.

In a pulsed system, such as a pulsed radar transmitter system,
the starting phases of the individual pulses are more or less
randomly distributed. This partial pulse-to-pulse incoherence de-
grades the coherent superposition of pulses, which is crucial for
obtaining high signal-to-noise ratios, and is manifested as an
excess noise in the signal. .

Thus in a pulsed system, injection locking plays a doubly
beneficial role. Firstly, it will suppress the inherent noise level of
the oscillator in the same way as for a CW system. Secondly, by
locking the phases of the individual pulses, it will also decrease
the excess noise due to partial pulse-to-pulse coherence. )

This particular aspect of a pulsed system was touched upon in
some early experiments on injection locking of pulsed oscillators
[4], [5]. Furthermore, in a very recent paper [6], experimental
results as well as a qualitative discussion were presented concern-
ing noise in phase-primed solid-state pulsed radar transmitters.
However, as far as we know, no further quantitative analysis has
been given of the properties of this noise source and its suppres-
sion by injection locking.

The present work is meant to emphasize the importance of the
problem and to present a more quantitative analysis of its main
characteristics.
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II. FouRrIER TRANSFORM RESULTS FOR A PULSED SYSTEM

We start our analysis by giving some elementary results for the
Fourier transform of a pulsed system. If f(¢) denotes the (com-
plex) amplitude variation of one pulse, we can write the ampli-
tude variation g(¢) for a pulsed system consisting of 2N +1
pulses as

+

g(t)=

k=

> fkmyen M

where T is the pulse repetition time and we have included the

© possibility of different initial phases ¢, for consecutive pulses.

Taking the Fourier transform of (1), we obtain

+N

G(w)= F(w)k_z_ exp(—ikwT+i¢,)

)

where F(w) denotes the transform of f(2). The power spectrum
Gy (w), normalized with respect to the number of pulses, can be
written

TR 10 =Go(@) = IF()H() ()
where H(w) is given by
+N
H(w)= oo —i(k=n)oT+i(¢,—9,)]
(w) 2N+1 k’ng_Nexp[ l( n)w l( k )]

(4)

We emphasize the fact that the normalized spectrum for the
pulsed system is written as the product of the spectrum of the
single pulse (| F(w)|*) and a sampling function ( H(w)).

Two extreme cases clearly illustrate the importance of the
initial phases ¢,.

A. Complete Pulse-to- Pulse Coherence

If all pulses are initiated with the same phase, we have ¢, — ¢,
=0 for all k and 7 and (4) reduces to

()= 1 sit[(N+3)eT]
(2N +1)

H(w)=H,

5
sin’ 957: ®

i.e., the well-known sampling function for a periodic, but finite,
pulse train.

B. Complete Pulse-to- Puise Incoherence

When all pulses are completely incoherent with initial phases
randomly distributed, uniformly over the interval [— 7, 7], we
obtain after statistically averaging H(w)

(H(w))=1. (6)

This implies that the spectrum of the pulsed system coincides
with the spectrum of one pulse.

IIL

Since a spectrum of a pulsed signal depends crucially on the
coherence properties of consecutive pulses, we now consider the
situation of partial pulse-to-pulse coherence. A technically im-
portant (and at the same time analytically simple) case is when all
phases can be regarded as uncorrelated, but with a normally

PARTIAL PULSE-TO-PULSE COHERENCE
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distributed deviation from the mean, i.c.,

($1) =1%o
<¢k¢n> = <(A¢)2>8kn (7)

In this case, the average of H(w) can be written in the suggestive
form

(n=exp(—((8¢)"))
(H(w)y=pHy(w)+(1-p) (8)

ie., as a weighted mean of a completely coherent part (g Hy(w))
and a completely incoherent part (1—p), the weighting factor
being determined by the rms phase error. We recognize that (8)
describes the gradual transition between the previous limiting
cases of completely coherent (((A¢)?*) - 0,p—1) and com-
pletely incoherent ((A$)?) - oo, p — 0) pulses.

The effect of decreasing degree of pulse-to-pulse coherence on
(H(w)) is easily inferred from (8). As p decreases, the maxima
and minima of { H(w)) decrease and increase, respectively. We
have

max{H(w)) =2uN
min(H(w))=1—p. 9

In particular, the nonzero minimum of { H(w)} is equivalent to
an excess white noise level between the high peaks of the coher-
ent sampling function, which are now slightly reduced. The
corresponding signal-to-noise ratio or peak-to-valley ratio s is
simply [6]

S=1?LN= 2N2 . (10)
B e (((89)))-1
For small phase errors, we obtain
s=—2N_ (11)
((2¢)7)

and taking, e.g.,, 2N = 60000 and ((A¢)?}/? =1°, we obtain a
signal-to-noise ratio of § =83 dB.

IV. EFreCTS OF INJECTION LOCKING ON PULSE-TO-PULSE
COHERENCE

Injection locking plays a very important role in suppressing the
inherent oscillator noise in the outgoing signal [2]. This effect is
well known for CW signals and will not be discussed further here.
However, when injection locking strongly reduces the noise level
in a pulsed system, see [7], this is achieved as a result of two
independent effects.

1) The inherent oscillator noise is reduced as in the CW casec.

2) The pulse-to-pulse coherence is improved.

For a solid-state microwave oscillator, the initial oscillator
phases take on values which are randomly distributed over the
interval [— #, w]. However, injection locking tends to lock the
output signal to a certain phase ¢,, which is determined solely by
the characteristic properties of the oscillator and the injected
signal and which is independent of the initial phase of the
oscillator.

The dynamic equation for the locking of the phase ¢(¢) of the
output signal is [1, 2]

d¢

——=—Awy — Aw,,sind

at (12)
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where Aw, is the difference between the frequencies of the

locking signal and the free-running oscillator, and Aw,, is the

maximum frequency off-set for which locking can be achieved.

Aw,, is determined by the parameters of the oscillator together

with the ratio of the amplitudes of the free-running oscillator and

the injected signal.

The characteristic locking phase ¢, is obtained from (12) as

singy = — %‘&. (13)

Wy

For simplicity, we assume exact resonance (Aw, =0, in which
case the stable locking phase can be shown to be ¢, =0 [1], [2]).
The phase variation during the locking process is obtained by
solving (12), assuming an initial phase ¢,. The solution becomes
particularly simple for small ¢,, viz.

¢ =¢,exp(— Aw, ). (14)

Note that (14) implies a characteristic locking time 7, =1/Aw,,.

We emphasize one consequence of (12)-(14), which is of
particular importance in the present context. Phase locking is a
dynamic process which continuously during pulses improves the
pulse-to-pulse coherence by mapping the initial phase spread of
2o on a phase interval 2A¢(¢) shrinking in time.

A more detailed analysis of noise due to partial pulse-to-pulse
coherence, including the dynamics of the phase-locking process,
will be presented in a later paper. At present, we will give a
simplified model in terms of an effective phase spread. Since
A¢(r) varies between 7 and 0, we can, as a first estimate of the
rms value of the phase deviation, take

[«(as)]" (15)

where 7, is he length of the pulse. For simplicity, we have
approximated the time variation of ¢(¢) as an exponential of the
form given in (14) and taken the phase spread corresponding to
half the pulse length. Using (15) in (11), we obtain the following
expression for the noise level:

=mexp(— %Awml;,)

(16)

Taking, as before, 2N = 60000 and a locking time 7, =T, /8, we
obtain s = 73 dB.

Although the present analysis is rather qualitative on several
important points, it does give an indication of the importance of
pulse-to-pulse incoherence as a source of additional noise in
pulsed oscillator systems.

2N
S=?eXP(+Awm7;).
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